Databricks Operations Runbook
Document Information
Version: 1.0
Last Updated: 2025-01-24
Classification: Internal Use
Owner: Platform Operations Team
__
1. Executive Summary
This runbook provides operational procedures for managing Databricks workloads in production. It covers monitoring, alerting, incident response, maintenance procedures, and disaster recovery for the Databricks Lakehouse platform.
__
2. Operations Architecture
2.1 Operational Framework
┌───┐
│ DATABRICKS OPERATIONS FRAMEWORK │
├───┤
│ │
│ ┌───┐ │
│ │ MONITORING LAYER │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Cluster │ │ Job │ │ Query │ │ System │ │ │
│ │ │ Metrics │ │ Metrics │ │ Metrics │ │ Tables │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ ALERTING LAYER │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Databricks │ │ Azure │ │ Custom │ │ Third │ │ │
│ │ │ Alerts │ │ Monitor │ │ Alerts │ │ Party │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ INCIDENT MANAGEMENT │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Detection │──▶│ Triage │──▶│ Resolution │──▶│ Review │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ MAINTENANCE OPERATIONS │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Scheduled │ │ Delta │ │ Backup │ │ Upgrade │ │ │
│ │ │ Jobs │ │ Maint. │ │ Recovery │ │ Patching │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │
└───┘

__
3. Monitoring Procedures
3.1 System Tables Monitoring
-- Job execution monitoring
CREATE OR REPLACE VIEW ops.monitoring.job_health AS
SELECT
 job_id,
 run_name,
 result_state,
 start_time,
 end_time,
 TIMESTAMPDIFF(SECOND, start_time, end_time) AS duration_seconds,
 CASE
 WHEN result_state = 'FAILED' THEN 'CRITICAL'
 WHEN result_state = 'TIMED_OUT' THEN 'WARNING'
 WHEN TIMESTAMPDIFF(SECOND, start_time, end_time) > expected_duration_seconds * 2 THEN 'SLOW'
 ELSE 'HEALTHY'
 END AS health_status,
 error_message
FROM system.lakeflow.job_run_timeline
WHERE start_time >= DATEADD(HOUR, -24, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- Cluster health monitoring
CREATE OR REPLACE VIEW ops.monitoring.cluster_health AS
SELECT
 cluster_id,
 cluster_name,
 state,
 driver_node_type,
 node_type_id,
 num_workers,
 autoscale_min_workers,
 autoscale_max_workers,
 start_time,
 TIMESTAMPDIFF(HOUR, start_time, CURRENT_TIMESTAMP()) AS running_hours,
 last_activity_time,
 TIMESTAMPDIFF(MINUTE, last_activity_time, CURRENT_TIMESTAMP()) AS idle_minutes,
 CASE
 WHEN state = 'ERROR' THEN 'CRITICAL'
 WHEN state = 'TERMINATED' THEN 'STOPPED'
 WHEN TIMESTAMPDIFF(MINUTE, last_activity_time, CURRENT_TIMESTAMP()) > 30 THEN 'IDLE'
 ELSE 'ACTIVE'
 END AS health_status
FROM system.compute.clusters
WHERE state != 'TERMINATED'
 OR start_time >= DATEADD(HOUR, -24, CURRENT_TIMESTAMP());

-- SQL Warehouse monitoring
CREATE OR REPLACE VIEW ops.monitoring.warehouse_health AS
SELECT
 warehouse_id,
 name AS warehouse_name,
 state,
 num_clusters,
 num_active_sessions,
 -- Query metrics
 SUM(CASE WHEN query_state = 'RUNNING' THEN 1 ELSE 0 END) AS running_queries,
 SUM(CASE WHEN query_state = 'QUEUED' THEN 1 ELSE 0 END) AS queued_queries,
 AVG(CASE WHEN query_state = 'FINISHED' THEN duration_ms END) AS avg_query_duration_ms,
 -- Health assessment
 CASE
 WHEN state != 'RUNNING' THEN 'STOPPED'
 WHEN SUM(CASE WHEN query_state = 'QUEUED' THEN 1 ELSE 0 END) > 10 THEN 'CONGESTED'
 WHEN AVG(CASE WHEN query_state = 'FINISHED' THEN duration_ms END) > 60000 THEN 'SLOW'
 ELSE 'HEALTHY'
 END AS health_status
FROM system.query.history q
JOIN system.compute.warehouses w ON q.warehouse_id = w.warehouse_id
WHERE q.start_time >= DATEADD(HOUR, -1, CURRENT_TIMESTAMP())
GROUP BY warehouse_id, name, state, num_clusters, num_active_sessions;

-- Data freshness monitoring
CREATE OR REPLACE VIEW ops.monitoring.data_freshness AS
SELECT
 table_catalog,
 table_schema,
 table_name,
 last_modified,
 TIMESTAMPDIFF(HOUR, last_modified, CURRENT_TIMESTAMP()) AS hours_since_update,
 expected_update_frequency_hours,
 CASE
 WHEN TIMESTAMPDIFF(HOUR, last_modified, CURRENT_TIMESTAMP()) > expected_update_frequency_hours * 2 THEN 'CRITICAL'
 WHEN TIMESTAMPDIFF(HOUR, last_modified, CURRENT_TIMESTAMP()) > expected_update_frequency_hours THEN 'WARNING'
 ELSE 'FRESH'
 END AS freshness_status
FROM ops.config.monitored_tables mt
JOIN (
 SELECT
 table_catalog,
 table_schema,
 table_name,
 MAX(last_modified) AS last_modified
 FROM system.information_schema.tables
 GROUP BY table_catalog, table_schema, table_name
) t ON mt.full_table_name = CONCAT(t.table_catalog, '.', t.table_schema, '.', t.table_name);

3.2 Real-Time Monitoring Dashboard
-- Operations dashboard queries

-- Current system status
SELECT
 'Jobs' AS component,
 COUNT(*) AS total,
 SUM(CASE WHEN health_status = 'HEALTHY' THEN 1 ELSE 0 END) AS healthy,
 SUM(CASE WHEN health_status = 'CRITICAL' THEN 1 ELSE 0 END) AS critical
FROM ops.monitoring.job_health
WHERE start_time >= DATEADD(HOUR, -1, CURRENT_TIMESTAMP())

UNION ALL

SELECT
 'Clusters' AS component,
 COUNT(*) AS total,
 SUM(CASE WHEN health_status = 'ACTIVE' THEN 1 ELSE 0 END) AS healthy,
 SUM(CASE WHEN health_status = 'CRITICAL' THEN 1 ELSE 0 END) AS critical
FROM ops.monitoring.cluster_health

UNION ALL

SELECT
 'Warehouses' AS component,
 COUNT(*) AS total,
 SUM(CASE WHEN health_status = 'HEALTHY' THEN 1 ELSE 0 END) AS healthy,
 SUM(CASE WHEN health_status IN ('CONGESTED', 'STOPPED') THEN 1 ELSE 0 END) AS critical
FROM ops.monitoring.warehouse_health

UNION ALL

SELECT
 'Tables' AS component,
 COUNT(*) AS total,
 SUM(CASE WHEN freshness_status = 'FRESH' THEN 1 ELSE 0 END) AS healthy,
 SUM(CASE WHEN freshness_status = 'CRITICAL' THEN 1 ELSE 0 END) AS critical
FROM ops.monitoring.data_freshness;

__
4. Alerting Configuration
4.1 Alert Definitions
from dataclasses import dataclass
from typing import List, Optional
from enum import Enum

class AlertSeverity(Enum):
 CRITICAL = "critical"
 HIGH = "high"
 MEDIUM = "medium"
 LOW = "low"

class AlertChannel(Enum):
 EMAIL = "email"
 SLACK = "slack"
 PAGERDUTY = "pagerduty"
 TEAMS = "teams"

@dataclass
class AlertRule:
 rule_id: str
 rule_name: str
 description: str
 query: str
 condition: str # e.g., "count > 0"
 severity: AlertSeverity
 channels: List[AlertChannel]
 cooldown_minutes: int = 30
 enabled: bool = True

Alert rule definitions
alert_rules = [
 AlertRule(
 rule_id="JOB_FAILURE",
 rule_name="Job Failure Alert",
 description="Alert when production jobs fail",
 query="""
 SELECT job_id, run_name, error_message
 FROM ops.monitoring.job_health
 WHERE health_status = 'CRITICAL'
 AND start_time >= DATEADD(MINUTE, -15, CURRENT_TIMESTAMP())
 """,
 condition="count > 0",
 severity=AlertSeverity.CRITICAL,
 channels=[AlertChannel.PAGERDUTY, AlertChannel.SLACK],
 cooldown_minutes=15
),
 AlertRule(
 rule_id="CLUSTER_OOM",
 rule_name="Cluster Out of Memory",
 description="Alert when cluster experiences OOM errors",
 query="""
 SELECT cluster_id, cluster_name, error_message
 FROM ops.monitoring.cluster_health
 WHERE health_status = 'CRITICAL'
 AND error_message LIKE '%OutOfMemory%'
 """,
 condition="count > 0",
 severity=AlertSeverity.CRITICAL,
 channels=[AlertChannel.PAGERDUTY, AlertChannel.SLACK],
 cooldown_minutes=30
),
 AlertRule(
 rule_id="WAREHOUSE_QUEUE",
 rule_name="SQL Warehouse Queue Buildup",
 description="Alert when queries are queuing",
 query="""
 SELECT warehouse_name, queued_queries
 FROM ops.monitoring.warehouse_health
 WHERE queued_queries > 20
 """,
 condition="count > 0",
 severity=AlertSeverity.HIGH,
 channels=[AlertChannel.SLACK],
 cooldown_minutes=15
),
 AlertRule(
 rule_id="DATA_STALE",
 rule_name="Data Freshness Alert",
 description="Alert when critical tables are stale",
 query="""
 SELECT table_name, hours_since_update
 FROM ops.monitoring.data_freshness
 WHERE freshness_status = 'CRITICAL'
 """,
 condition="count > 0",
 severity=AlertSeverity.HIGH,
 channels=[AlertChannel.SLACK, AlertChannel.EMAIL],
 cooldown_minutes=60
),
 AlertRule(
 rule_id="DLT_PIPELINE_FAILURE",
 rule_name="DLT Pipeline Failure",
 description="Alert when DLT pipeline fails",
 query="""
 SELECT pipeline_id, pipeline_name, state
 FROM system.lakeflow.pipeline_events
 WHERE state = 'FAILED'
 AND timestamp >= DATEADD(MINUTE, -15, CURRENT_TIMESTAMP())
 """,
 condition="count > 0",
 severity=AlertSeverity.CRITICAL,
 channels=[AlertChannel.PAGERDUTY, AlertChannel.SLACK],
 cooldown_minutes=15
)
]

4.2 Alert Execution Engine
import requests
from datetime import datetime, timedelta

class AlertEngine:
 def __init__(self, spark, secret_scope: str):
 self.spark = spark
 self.secret_scope = secret_scope
 self.alert_state = {} # Track cooldowns

 def check_alert(self, rule: AlertRule) -> Optional[dict]:
 """Check if alert condition is met."""
 if not rule.enabled:
 return None

 # Check cooldown
 if rule.rule_id in self.alert_state:
 last_fired = self.alert_state[rule.rule_id]
 if datetime.now() - last_fired < timedelta(minutes=rule.cooldown_minutes):
 return None

 # Execute query
 result_df = self.spark.sql(rule.query)
 count = result_df.count()

 # Evaluate condition
 if eval(rule.condition):
 self.alert_state[rule.rule_id] = datetime.now()
 return {
 "rule": rule,
 "count": count,
 "sample_data": result_df.limit(5).collect(),
 "fired_at": datetime.now()
 }

 return None

 def send_alert(self, alert_data: dict):
 """Send alert to configured channels."""
 rule = alert_data["rule"]
 message = self.format_alert_message(alert_data)

 for channel in rule.channels:
 if channel == AlertChannel.SLACK:
 self.send_slack(message, rule.severity)
 elif channel == AlertChannel.PAGERDUTY:
 self.send_pagerduty(message, rule.severity)
 elif channel == AlertChannel.EMAIL:
 self.send_email(message, rule.severity)
 elif channel == AlertChannel.TEAMS:
 self.send_teams(message, rule.severity)

 def format_alert_message(self, alert_data: dict) -> str:
 """Format alert message."""
 rule = alert_data["rule"]
 return f"""
{rule.severity.value.upper()}: {rule.rule_name}

{rule.description}

Details:
- Affected items: {alert_data['count']}
- Time: {alert_data['fired_at'].isoformat()}

Sample Data:
{self.format_sample_data(alert_data['sample_data'])}

_Rule ID: {rule.rule_id}_
"""

 def send_slack(self, message: str, severity: AlertSeverity):
 """Send Slack notification."""
 webhook_url = dbutils.secrets.get(self.secret_scope, "slack_webhook")
 color_map = {
 AlertSeverity.CRITICAL: "#FF0000",
 AlertSeverity.HIGH: "#FFA500",
 AlertSeverity.MEDIUM: "#FFFF00",
 AlertSeverity.LOW: "#00FF00"
 }

 payload = {
 "attachments": [{
 "color": color_map.get(severity, "#808080"),
 "text": message,
 "footer": "Databricks Operations Alert"
 }]
 }
 requests.post(webhook_url, json=payload)

 def send_pagerduty(self, message: str, severity: AlertSeverity):
 """Send PagerDuty notification."""
 routing_key = dbutils.secrets.get(self.secret_scope, "pagerduty_key")

 severity_map = {
 AlertSeverity.CRITICAL: "critical",
 AlertSeverity.HIGH: "error",
 AlertSeverity.MEDIUM: "warning",
 AlertSeverity.LOW: "info"
 }

 payload = {
 "routing_key": routing_key,
 "event_action": "trigger",
 "payload": {
 "summary": message[:1024],
 "severity": severity_map.get(severity, "info"),
 "source": "databricks-operations"
 }
 }
 requests.post("https://events.pagerduty.com/v2/enqueue", json=payload)

 def run_all_checks(self):
 """Run all alert checks."""
 for rule in alert_rules:
 try:
 alert = self.check_alert(rule)
 if alert:
 self.send_alert(alert)
 except Exception as e:
 print(f"Error checking rule {rule.rule_id}: {e}")

Usage: Schedule this to run every 5 minutes
engine = AlertEngine(spark, "operations")
engine.run_all_checks()

__
5. Incident Response Procedures
5.1 Incident Classification
	Severity
	Definition
	Response Time
	Examples

	P1 - Critical
	Complete system outage or data loss
	15 minutes
	All jobs failing, cluster unavailable, data corruption

	P2 - High
	Major feature impacted, no workaround
	1 hour
	Key pipeline failed, performance severely degraded

	P3 - Medium
	Feature impacted, workaround available
	4 hours
	Non-critical job failure, minor performance issue

	P4 - Low
	Minor issue, minimal impact
	1 business day
	Warning alerts, optimization opportunities

5.2 Incident Response Playbooks
Playbook: Job Failure
┌───┐
│ PLAYBOOK: JOB FAILURE RESPONSE │
├───┤
│ │
│ STEP 1: INITIAL TRIAGE (5 minutes) │
│ ───────────────────────────────────── │
│ □ Identify failed job from alert │
│ □ Check job run history for failure pattern │
│ □ Review error message and stack trace │
│ □ Classify severity (P1-P4) │
│ │
│ STEP 2: GATHER INFORMATION (10 minutes) │
│ ───────────────────────────────────── │
│ □ Check cluster status (running, terminated, error) │
│ □ Review Spark UI for failed tasks │
│ □ Check input data availability and freshness │
│ □ Review recent code changes │
│ │
│ STEP 3: COMMON FAILURE PATTERNS │
│ ───────────────────────────────────── │
│ • OutOfMemoryError → Increase cluster size or memory configs │
│ • FileNotFoundException → Check input paths and permissions │
│ • Network timeout → Retry or check connectivity │
│ • Schema mismatch → Check upstream data changes │
│ • Permission denied → Verify service principal access │
│ │
│ STEP 4: REMEDIATION │
│ ───────────────────────────────────── │
│ □ Apply fix or workaround │
│ □ Rerun failed job │
│ □ Verify successful completion │
│ □ Check downstream dependencies │
│ │
│ STEP 5: POST-INCIDENT │
│ ───────────────────────────────────── │
│ □ Document root cause │
│ □ Create permanent fix if needed │
│ □ Update runbook if new pattern │
│ □ Schedule post-mortem for P1/P2 │
│ │
└───┘

Playbook: Cluster Issues
Cluster troubleshooting script
def diagnose_cluster_issue(cluster_id: str):
 """Diagnose common cluster issues."""

 # Get cluster status
 cluster_info = spark.sql(f"""
 SELECT * FROM system.compute.clusters
 WHERE cluster_id = '{cluster_id}'
 """).collect()

 if not cluster_info:
 return {"status": "NOT_FOUND", "action": "Cluster does not exist"}

 cluster = cluster_info[0]
 diagnosis = {"cluster_id": cluster_id, "issues": [], "actions": []}

 # Check state
 if cluster["state"] == "ERROR":
 diagnosis["issues"].append("Cluster in ERROR state")
 diagnosis["actions"].append("Check termination reason in cluster events")

 if cluster["state"] == "TERMINATED":
 # Check termination reason
 events = spark.sql(f"""
 SELECT * FROM system.compute.cluster_events
 WHERE cluster_id = '{cluster_id}'
 ORDER BY timestamp DESC
 LIMIT 10
 """).collect()

 for event in events:
 if "TERMINATED" in event["type"]:
 diagnosis["termination_reason"] = event.get("details")
 break

 # Check for OOM
 logs = get_driver_logs(cluster_id)
 if "OutOfMemoryError" in logs:
 diagnosis["issues"].append("OutOfMemoryError detected")
 diagnosis["actions"].extend([
 "Increase executor memory: spark.executor.memory",
 "Increase driver memory: spark.driver.memory",
 "Consider larger instance type"
])

 # Check for network issues
 if "Connection refused" in logs or "timeout" in logs.lower():
 diagnosis["issues"].append("Network connectivity issues")
 diagnosis["actions"].extend([
 "Check VNet/subnet configuration",
 "Verify firewall rules",
 "Check DNS resolution"
])

 # Check for disk space
 if "No space left on device" in logs:
 diagnosis["issues"].append("Disk space exhausted")
 diagnosis["actions"].extend([
 "Enable elastic disk",
 "Increase disk size in cluster config",
 "Check for data spill from large shuffles"
])

 return diagnosis

Automated remediation
def attempt_cluster_recovery(cluster_id: str, diagnosis: dict):
 """Attempt automatic recovery based on diagnosis."""

 for issue in diagnosis.get("issues", []):
 if "OutOfMemoryError" in issue:
 # Try to restart with more memory
 update_cluster_config(cluster_id, {
 "spark.executor.memory": "16g",
 "spark.driver.memory": "8g"
 })
 restart_cluster(cluster_id)
 return "Restarted with increased memory"

 if "Disk space" in issue:
 # Enable elastic disk
 update_cluster_config(cluster_id, {
 "enable_elastic_disk": True
 })
 restart_cluster(cluster_id)
 return "Restarted with elastic disk enabled"

 return "No automatic remediation available"

5.3 Incident Communication Template
Incident Notification

Incident ID: INC-2025-001
Severity: P1 - Critical
Status: Investigating / Mitigated / Resolved

Summary
Brief description of the incident.

Impact
- **Affected Systems:** [List affected jobs, pipelines, dashboards]
- **User Impact:** [Description of user-facing impact]
- **Data Impact:** [Any data delays or inconsistencies]

Timeline
- **Detected:** 2025-01-24 10:30 UTC
- **Acknowledged:** 2025-01-24 10:35 UTC
- **Mitigated:** [Time or TBD]
- **Resolved:** [Time or TBD]

Current Status
[Detailed status update]

Next Update
[Expected time of next update]

Contacts
- **Incident Commander:** [Name]
- **Technical Lead:** [Name]

__
6. Maintenance Procedures
6.1 Scheduled Maintenance Jobs
Delta table maintenance job
def run_table_maintenance():
 """Run scheduled maintenance on Delta tables."""

 # Get list of tables requiring maintenance
 tables = spark.sql("""
 SELECT
 table_catalog,
 table_schema,
 table_name,
 size_gb,
 num_files,
 avg_file_size_mb,
 days_since_optimize,
 days_since_vacuum
 FROM ops.monitoring.delta_table_health
 WHERE days_since_optimize > 7
 OR (avg_file_size_mb < 64 AND num_files > 100)
 ORDER BY size_gb DESC
 """).collect()

 results = []

 for table in tables:
 full_name = f"{table['table_catalog']}.{table['table_schema']}.{table['table_name']}"

 try:
 # Run OPTIMIZE
 if table['days_since_optimize'] > 7 or table['avg_file_size_mb'] < 64:
 start_time = datetime.now()
 spark.sql(f"OPTIMIZE {full_name}")
 duration = (datetime.now() - start_time).seconds
 results.append({
 "table": full_name,
 "operation": "OPTIMIZE",
 "status": "SUCCESS",
 "duration_seconds": duration
 })

 # Run VACUUM
 if table.get('days_since_vacuum', 999) > 7:
 spark.sql(f"VACUUM {full_name} RETAIN 168 HOURS")
 results.append({
 "table": full_name,
 "operation": "VACUUM",
 "status": "SUCCESS"
 })

 # Update statistics
 spark.sql(f"ANALYZE TABLE {full_name} COMPUTE STATISTICS")
 results.append({
 "table": full_name,
 "operation": "ANALYZE",
 "status": "SUCCESS"
 })

 except Exception as e:
 results.append({
 "table": full_name,
 "operation": "MAINTENANCE",
 "status": "FAILED",
 "error": str(e)
 })

 # Log results
 results_df = spark.createDataFrame(results)
 results_df.write.mode("append").saveAsTable("ops.logs.maintenance_results")

 return results

Cleanup old data
def cleanup_old_data():
 """Clean up old operational data."""

 cleanup_tasks = [
 # Clean query history older than 90 days
 ("ops.logs.query_audit", 90),
 # Clean alert history older than 30 days
 ("ops.logs.alert_history", 30),
 # Clean maintenance logs older than 180 days
 ("ops.logs.maintenance_results", 180)
]

 for table, retention_days in cleanup_tasks:
 try:
 spark.sql(f"""
 DELETE FROM {table}
 WHERE timestamp < DATEADD(DAY, -{retention_days}, CURRENT_DATE())
 """)
 print(f"Cleaned {table} - retained {retention_days} days")
 except Exception as e:
 print(f"Error cleaning {table}: {e}")

6.2 Maintenance Schedule
-- Maintenance schedule configuration
CREATE TABLE IF NOT EXISTS ops.config.maintenance_schedule (
 task_name STRING,
 schedule_cron STRING,
 last_run TIMESTAMP,
 next_run TIMESTAMP,
 is_enabled BOOLEAN,
 parameters MAP<STRING, STRING>
);

INSERT INTO ops.config.maintenance_schedule VALUES
 ('delta_optimize_gold', '0 2 * * *', NULL, NULL, TRUE, MAP('layer', 'gold')),
 ('delta_optimize_silver', '0 3 * * *', NULL, NULL, TRUE, MAP('layer', 'silver')),
 ('vacuum_all_tables', '0 4 * * 0', NULL, NULL, TRUE, MAP('retain_hours', '168')),
 ('analyze_statistics', '0 5 * * *', NULL, NULL, TRUE, MAP()),
 ('cleanup_old_logs', '0 6 1 * *', NULL, NULL, TRUE, MAP('retention_days', '90')),
 ('backup_uc_metadata', '0 1 * * *', NULL, NULL, TRUE, MAP());

__
7. Disaster Recovery
7.1 Backup Strategy
Unity Catalog metadata backup
def backup_unity_catalog_metadata():
 """Backup Unity Catalog metadata."""

 backup_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
 backup_path = f"/backup/unity_catalog/{backup_timestamp}"

 # Backup catalogs
 catalogs = spark.sql("SHOW CATALOGS").collect()
 for catalog in catalogs:
 catalog_name = catalog["catalog"]

 # Skip system catalogs
 if catalog_name in ["system", "hive_metastore"]:
 continue

 # Backup schemas
 schemas = spark.sql(f"SHOW SCHEMAS IN {catalog_name}").collect()
 for schema in schemas:
 schema_name = schema["databaseName"]

 # Backup table definitions
 tables = spark.sql(f"SHOW TABLES IN {catalog_name}.{schema_name}").collect()
 for table in tables:
 table_name = table["tableName"]
 full_name = f"{catalog_name}.{schema_name}.{table_name}"

 try:
 # Get CREATE TABLE statement
 create_stmt = spark.sql(f"SHOW CREATE TABLE {full_name}").collect()[0][0]

 # Save to backup location
 backup_df = spark.createDataFrame([{
 "catalog": catalog_name,
 "schema": schema_name,
 "table": table_name,
 "create_statement": create_stmt,
 "backup_timestamp": backup_timestamp
 }])

 backup_df.write.mode("append").parquet(f"{backup_path}/table_definitions")

 except Exception as e:
 print(f"Error backing up {full_name}: {e}")

 print(f"Backup completed to {backup_path}")

Delta table backup
def backup_delta_table(
 source_table: str,
 backup_location: str,
 as_of_version: int = None
):
 """Create backup of Delta table."""

 if as_of_version:
 # Point-in-time backup
 df = spark.read.format("delta").option(
 "versionAsOf", as_of_version
).table(source_table)
 else:
 # Current state backup
 df = spark.table(source_table)

 # Write as Delta with metadata
 df.write.format("delta").mode("overwrite").option(
 "userMetadata", f"Backup of {source_table} at {datetime.now().isoformat()}"
).save(backup_location)

 # Also create shallow clone for space efficiency
 spark.sql(f"""
 CREATE TABLE IF NOT EXISTS backup.{source_table.replace('.', '_')}_clone
 SHALLOW CLONE {source_table}
 """)

 return backup_location

7.2 Recovery Procedures
Time travel recovery
def recover_table_to_point_in_time(
 table_name: str,
 recovery_timestamp: str = None,
 recovery_version: int = None
):
 """Recover table to specific point in time."""

 if recovery_timestamp:
 # Restore to timestamp
 spark.sql(f"""
 RESTORE TABLE {table_name}
 TO TIMESTAMP AS OF '{recovery_timestamp}'
 """)
 elif recovery_version:
 # Restore to version
 spark.sql(f"""
 RESTORE TABLE {table_name}
 TO VERSION AS OF {recovery_version}
 """)

 # Verify recovery
 current_version = spark.sql(f"DESCRIBE HISTORY {table_name} LIMIT 1").collect()[0]["version"]
 print(f"Table {table_name} restored. Current version: {current_version}")

Full disaster recovery
def disaster_recovery_procedure():
 """
 Full disaster recovery procedure.
 Execute this when recovering from complete workspace loss.
 """

 recovery_steps = [
 "1. Provision new Databricks workspace",
 "2. Configure Unity Catalog metastore connection",
 "3. Restore workspace configuration from backup",
 "4. Recreate clusters from templates",
 "5. Restore job definitions",
 "6. Verify data access via Unity Catalog",
 "7. Run data validation checks",
 "8. Restore secrets to new scope",
 "9. Update DNS/networking if needed",
 "10. Verify all integrations"
]

 for step in recovery_steps:
 print(step)

 # Automated steps
 print("\nExecuting automated recovery steps...")

 # Restore job definitions from backup
 jobs_backup = spark.read.parquet("/backup/jobs/latest")
 for job in jobs_backup.collect():
 create_job_from_backup(job)

 # Verify critical tables accessible
 critical_tables = [
 "gold.fact_sales",
 "gold.dim_customer",
 "gold.dim_product"
]

 for table in critical_tables:
 try:
 count = spark.table(table).count()
 print(f"✓ {table}: {count} rows accessible")
 except Exception as e:
 print(f"✗ {table}: ERROR - {e}")

__
8. Operational Checklists
8.1 Daily Operations Checklist
[] Review overnight job execution status
[] Check data freshness for critical tables
[] Verify DLT pipeline health
[] Review any triggered alerts
[] Check cluster utilization metrics
[] Verify SQL warehouse availability
[] Review error logs for patterns
[] Check Unity Catalog audit logs
8.2 Weekly Operations Checklist
[] Run Delta table optimization (OPTIMIZE)
[] Review cost reports by team/project
[] Analyze slow query patterns
[] Review and tune autoscaling policies
[] Check for unused clusters/warehouses
[] Review access control changes
[] Update documentation if needed
[] Plan for upcoming maintenance
8.3 Monthly Operations Checklist
[] Run VACUUM on all tables
[] Review and update alert thresholds
[] Analyze incident trends
[] Review backup/recovery procedures
[] Update cluster policies
[] Review security configurations
[] Capacity planning review
[] Update runbooks with new procedures
__
Document Control:
Version: 1.0
Created: 2025-01-24
Last Review: 2025-01-24
Next Review: 2025-04-24

